Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Epigenomes ; 8(1)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38390895

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer that can affect immune system development and susceptibility to infection. Aging processes (measured as epigenetic age acceleration (EAA)) may mediate the immune-related effects of prenatal exposure to DEHP. This study's objective was to examine associations between prenatal DEHP exposure, EAA at three months of age, and the number of upper respiratory infections (URIs) from 12 to 18 months of age using a sample of 69 maternal-child pairs from a Canadian pregnancy cohort. Blood DNA methylation data were generated using the Infinium HumanMethylation450 BeadChip; EAA was estimated using Horvath's pan-tissue clock. Robust regressions examined overall and sex-specific associations. Higher prenatal DEHP exposure (B = 6.52, 95% CI = 1.22, 11.81) and increased EAA (B = 2.98, 95% CI = 1.64, 4.32) independently predicted more URIs. In sex-specific analyses, some similar effects were noted for boys, and EAA mediated the association between prenatal DEHP exposure and URIs. In girls, higher prenatal DEHP exposure was associated with decreased EAA, and no mediation was noted. Higher prenatal DEHP exposure may be associated with increased susceptibility to early childhood URIs, particularly in boys, and aging biomarkers such as EAA may be a biological mechanism. Larger cohort studies examining the potential developmental immunotoxicity of phthalates are needed.

2.
Environ Int ; 182: 108335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006772

RESUMO

Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) has increased in northern Alberta, Canada, due to industrial development in the Athabasca oil sands region (AOSR). However, the sources, summertime deposition fluxes and associated spatial patterns are poorly characterized, and the magnitude of contamination has not been directly contrasted with comparable measurements around large Canadian cities. PAHs were measured in Sphagnum moss collected from 30 bogs in the AOSR and compared with reference moss collected from various remote, rural and near-urban sites in Alberta and Ontario. At all 39 locations, strong correlations between depositional fluxes of PAHs and accumulation rates of ash (n = 117, r = 0.877, p < 0.001) implied that the main source of PAHs to moss was atmospheric deposition of particles. Average PAH concentrations at near-field AOSR sites (mean [SD], 62.4 [24.3] ng/g) were significantly higher than at far-field AOSR sites (44.9 [20.8] ng/g; p = 0.038) or the 7 reference sites in Alberta (20.6 [3.5] ng/g; p < 0.001). In fact, average PAH concentrations across the entire AOSR (7,850 km2) were approximately twice as high as in London, Ontario, or near petroleum upgrading and major traffic corridors in Edmonton, Alberta. A chemical mass balance model estimated that both delayed petcoke (33 % of PAHs) and fine tailings (38 % of PAHs) were the major sources of PAHs in the AOSR. Over the 2015 summer growing season, we estimate that 101-110 kg of PAHs (on 14,300-17,300 tonnes of PAH-containing dusts) were deposited to the AOSR within a 50 km radius of surface mining. Given that the highest PAH deposition was to the northern quadrant of the AOSR, which includes the First Nations community of Fort MacKay, further dust control measures should be considered to protect human and environmental health in the region.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Campos de Petróleo e Gás , Poeira/análise , Alberta , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental
3.
Environ Pollut ; 338: 122608, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742857

RESUMO

The sources, biogeochemical controls and sinks of perfluoroalkyl substances, such as perfluoroalkyl acids (PFAAs), in polar coastal regions are largely unknown. These were evaluated by measuring a large multi-compartment dataset of PFAAs concentrations at coastal Livingston and Deception Islands (maritime Antarctica) during three austral summers. PFAAs were abundant in atmospheric-derived samples (aerosols, rain, snow), consistent with the importance of atmospheric deposition as an input of PFAAs to Antarctica. Such PFAAs deposition was unequivocally demonstrated by the occurrence of PFAAs in small Antarctic lakes. Several lines of evidence supported the relevant amplification of PFAAs concentrations in surface waters driven by snow scavenging of sea-spray aerosol-bound PFAAs followed by snow-melting. For example, vertical profiles showed higher PFAAs concentrations at lower-salinity surface seawaters, and PFAAs concentrations in snow were significantly higher than in seawater. The higher levels of PFAAs at Deception Island than at Livingston Island are consistent with the semi-enclosed nature of the bay. Concentrations of PFOS decreased from 2014 to 2018, consistent with observations in other oceans. The sink of PFAAs due to the biological pump, transfer to the food web, and losses due to sea-spray aerosols alone are unlikely to have driven the decrease in PFOS concentrations. An exploratory assessment of the potential sinks of PFAAs suggests that microbial degradation of perfluoroalkyl sulfonates should be a research priority for the evaluation of PFAAs persistence in the coming decade.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Regiões Antárticas , Oceanos e Mares , Água do Mar , Aerossóis , Fluorocarbonos/análise , Monitoramento Ambiental , Ácidos Alcanossulfônicos/análise , Poluentes Químicos da Água/análise
4.
Environ Res ; 237(Pt 1): 116838, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544468

RESUMO

Exposure to environmental chemicals has been linked to an increased risk of pregnancy-induced hypertension (PIH). This prospective cohort study examined the associations between PIH and maternal chemical exposure to four classes of chemicals (i.e., phthalates, bisphenols, perfluoroalkyl acids, non-essential metals and trace minerals). Participants included 420 pregnant women from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort who had data available on diagnosed PIH and environmental chemical exposure. Twelve phthalate metabolites, two bisphenols, eight perfluoroalkyl acids and eleven non-essential metals or trace minerals were quantified in maternal urine or blood samples collected in the second trimester of pregnancy. Associations between the urinary and blood concentrations of these chemicals and PIH were assessed using multiple logistic and LASSO regression analyses in single- and multi-chemical exposure models, respectively. Thirty-five (8.3%) participants were diagnosed with PIH. In single chemical exposure models, two phthalate metabolites, mono-methyl phthalate (MMP) and monoethyl phthalate (MEP), three perfluoroalkyl acids, perfluoroheptanoic acid (PFHpA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA), and one metal, manganese, were associated with increased odds of PIH. The metabolites of di (2-ethylhexyl) phthalate (DEHP) and the molar sum of these metabolites, as well as antimony, displayed trend associations (p < 0.10). In multi-chemical exposure models using LASSO penalized regressions and double-LASSO regressions, MEP (AOR: 1.43, 95% CI: 1.09-1.88, p = 0.009) and PFNA (AOR: 2.03, 95% CI: 1.01-4.07, p = 0.04) were selected as the chemicals most highly associated with PIH. These findings suggest that maternal levels of phthalates and perfluoroalkyl acids may be associated with the diagnosis on PIH. Future research should consider both individual and multi-chemical exposures when examining predictors of PIH and other maternal cardiometabolic health disorders, such as preeclampsia, eclampsia, HELLP syndrome, and gestational diabetes.

5.
Environ Sci Technol ; 57(36): 13635-13645, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37648245

RESUMO

The leaching of per- and polyfluoroalkyl substances (PFASs) from Australian firefighting training grounds has resulted in extensive contamination of groundwater and nearby farmlands. Humans, farm animals, and wildlife in these areas may have been exposed to complex mixtures of PFASs from aqueous film-forming foams (AFFFs). This study aimed to identify PFAS classes in pooled whole blood (n = 4) and serum (n = 4) from cattle exposed to AFFF-impacted groundwater and potentially discover new PFASs in blood. Thirty PFASs were identified at various levels of confidence (levels 1a-5a), including three novel compounds: (i) perfluorohexanesulfonamido 2-hydroxypropanoic acid (FHxSA-HOPrA), (ii) methyl((perfluorohexyl)sulfonyl)sulfuramidous acid, and (iii) methyl((perfluorooctyl)sulfonyl)sulfuramidous acid, belonging to two different classes. Biotransformation intermediate, perfluorohexanesulfonamido propanoic acid (FHxSA-PrA), hitherto unreported in biological samples, was detected in both whole blood and serum. Furthermore, perfluoroalkyl sulfonamides, including perfluoropropane sulfonamide (FPrSA), perfluorobutane sulfonamide (FBSA), and perfluorohexane sulfonamide (FHxSA) were predominantly detected in whole blood, suggesting that these accumulate in the cell fraction of blood. The suspect screening revealed several fluoroalkyl chain-substituted PFAS. The results suggest that targeting only the major PFASs in the plasma or serum of AFFF-exposed mammals likely underestimates the toxicological risks associated with exposure. Future studies of AFFF-exposed populations should include whole-blood analysis with high-resolution mass spectrometry to understand the true extent of PFAS exposure.


Assuntos
Fluorocarbonos , Água Subterrânea , Humanos , Animais , Bovinos , Austrália , Animais Selvagens , Plasma , Mamíferos
6.
Environ Sci Technol ; 57(28): 10173-10184, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37394749

RESUMO

The challenge of chemical exposomics in human plasma is the 1000-fold concentration gap between endogenous substances and environmental pollutants. Phospholipids are the major endogenous small molecules in plasma, thus we validated a chemical exposomics protocol with an optimized phospholipid-removal step prior to targeted and non-targeted liquid chromatography high-resolution mass spectrometry. Increased injection volume with negligible matrix effect permitted sensitive multiclass targeted analysis of 77 priority analytes; median MLOQ = 0.05 ng/mL for 200 µL plasma. In non-targeted acquisition, mean total signal intensities of non-phospholipids were enhanced 6-fold in positive (max 28-fold) and 4-fold in negative mode (max 58-fold) compared to a control method without phospholipid removal. Moreover, 109 and 28% more non-phospholipid molecular features were detected by exposomics in positive and negative mode, respectively, allowing new substances to be annotated that were non-detectable without phospholipid removal. In individual adult plasma (100 µL, n = 34), 28 analytes were detected and quantified among 10 chemical classes, and quantitation of per- and polyfluoroalkyl substances (PFAS) was externally validated by independent targeted analysis. Retrospective discovery and semi-quantification of PFAS-precursors was demonstrated, and widespread fenuron exposure is reported in plasma for the first time. The new exposomics method is complementary to metabolomics protocols, relies on open science resources, and can be scaled to support large studies of the exposome.


Assuntos
Fluorocarbonos , Fosfolipídeos , Adulto , Humanos , Fosfolipídeos/química , Espectrometria de Massas em Tandem/métodos , Estudos Retrospectivos , Cromatografia Líquida/métodos , Fluorocarbonos/análise
7.
Neurotoxicology ; 98: 48-60, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517784

RESUMO

BACKGROUND: There is inconsistent evidence regarding the sex-specific associations between prenatal phthalate exposure and children's neurodevelopment. This could be due to differences in the phthalate exposures investigated and the neurodevelopmental domains assessed. OBJECTIVE: To evaluate the associations between prenatal phthalate exposure and sex-specific outcomes on measures of cognition, language, motor, executive function, and behaviour in children 2 years of age in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. METHODS: We evaluated the associations between prenatal phthalate exposure and sex-specific neurodevelopmental outcomes in children at 2 years of age using data from 448 mothers and their children (222 girls, 226 boys). Nine phthalate metabolites were measured in maternal urine collected in the second trimester of pregnancy. Children's cognitive, language, and motor outcomes were assessed using the Bayley Scales of Infant Development - Third Edition (Bayley-III). Parents completed questionnaires on children's executive function and behavior, the Behavior Rating Inventory of Executive Function- Preschool Version (BRIEF-P) and Child Behavior Checklist (CBCL), respectively. Sex-stratified robust multivariate regressions were performed. RESULTS: Higher maternal concentrations of ΣDEHP and its metabolites were associated with lower scores on the Bayley-III Cognitive (ß's from -11.8 to -0.07 95% CI's from -21.3 to -0.01), Language (ß's from -11.7 to -0. 09, 95% CI's from -22.3 to -0.02) and Motor (ß's from -10.9 to -0.07, 95% CI from -20.4 to -0.01) composites in boys. The patterns of association in girls were in the opposite direction on the Cognitive and Language composites; on the Motor composite they were in the same direction as boys, but of reduced strength. Higher concentrations of ΣDEHP and its metabolites were associated with higher scores (i.e., more difficulties) on all measures of executive function in girls: inhibitory self-control (B's from 0.05 to 0.11, 95% CI s from -0.01 to 0.15), flexibility (B's from 0.04 to 0.11, 95% CI s from 0.01 to 0.21) and emergent metacognition (B's from -0.01 to 0.06, 95% CIs from -0.01 to 0.20). Similar patterns of attenuated associations were seen in boys. Higher concentrations of ΣDEHP and its metabolites were associated with more Externalizing Problems in girls and boys (B's from 0.03 to 6.82, 95% CIs from -0.08 to 12.0). Two phthalates, MMP and MBP, had sex-specific adverse associations on measures of executive function and behaviour, respectively, while MEP was positively associated with boys' cognitive, language, and motor performance. Limited associations were observed between mixtures of maternal phthalates and sex-specific neurodevelopmental outcomes. CONCLUSIONS: Maternal prenatal concentrations of DEHP phthalates were associated with sex specific difference on measures of cognition and language at 2 years of age, specifically, poorer outcomes in boys. Higher exposure to DEHP was associated with poorer motor, executive function, and behavioural outcomes in girls and boys but the strength of these associations differed by sex. Limited associations were noted between phthalate mixtures and child neurodevelopment.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Masculino , Pré-Escolar , Lactente , Gravidez , Feminino , Humanos , Criança , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Exposição Materna/efeitos adversos , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/urina , Exposição Ambiental , Poluentes Ambientais/urina
8.
EBioMedicine ; 94: 104699, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37429082

RESUMO

BACKGROUND: Exposure to perfluoroalkyl substances may affect offspring immune development and thereby increase risk of childhood asthma, but the underlying mechanisms and asthma phenotype affected by such exposure is unknown. METHODS: In the Danish COPSAC2010 cohort of 738 unselected pregnant women and their children plasma PFOS and PFOA concentrations were semi-quantified by untargeted metabolomics analyses and calibrated using a targeted pipeline in mothers (gestation week 24 and 1 week postpartum) and children (age ½, 1½ and 6 years). We examined associations between pregnancy and childhood PFOS and PFOA exposure and childhood infections, asthma, allergic sensitization, atopic dermatitis, and lung function measures, and studied potential mechanisms by integrating data on systemic low-grade inflammation (hs-CRP), functional immune responses, and epigenetics. FINDINGS: Higher maternal PFOS and PFOA exposure during pregnancy showed association with a non-atopic asthma phenotype by age 6, a protection against sensitization, and no association with atopic asthma or lung function, or atopic dermatitis. The effect was primarily driven by prenatal exposure. There was no association with infection proneness, low-grade inflammation, altered immune responses or epigenetic changes. INTERPRETATIONS: Prenatal exposure to PFOS and PFOA, but not childhood exposure, specifically increased the risk of low prevalent non-atopic asthma, whereas there was no effect on atopic asthma, lung function, or atopic dermatitis. FUNDING: All funding received by COPSAC are listed on www.copsac.com. The Lundbeck Foundation (Grant no R16-A1694); The Novo Nordic Foundation (Grant nos NNF20OC0061029, NNF170C0025014, NNF180C0031764); The Ministry of Health (Grant no 903516); Danish Council for Strategic Research (Grant no 0603-00280B); and The Capital Region Research Foundation have provided core support to the COPSAC research center. COPSAC acknowledges the National Facility for Exposomics (SciLifeLab, Sweden) for supporting calibration of the untargeted metabolomics PFAS data. BC and AS has received funding for this project from the European Union's Horizon 2020 research and innovation programme (BC: grant agreement No. 946228 DEFEND; AS: grant agreement No. 864764 HEDIMED).


Assuntos
Asma , Dermatite Atópica , Fluorocarbonos , Efeitos Tardios da Exposição Pré-Natal , Feminino , Gravidez , Humanos , Asma/etiologia , Mães , Fenótipo , Inflamação/complicações , Fluorocarbonos/toxicidade
9.
Environ Int ; 178: 108087, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454627

RESUMO

BACKGROUND: Perfluoroalkyl acids (PFAAs) within the broader class of per- and polyfluoroalkyl substances (PFAS) are present in human serum as isomer mixtures, but epidemiological studies have yet to address isomer-specific associations with child development and behavior. OBJECTIVES: To examine associations between prenatal exposure to 25 PFAAs, including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) isomers, and child neurodevelopment among 490 mother-child pairs in a prospective Canadian birth cohort, the Alberta Pregnancy Outcomes and Nutrition (APrON) study. To consider the influence of a classic neurotoxicant, total mercury (THg), based on its likelihood of co-exposure with PFAAs from common dietary sources. METHODS: Maternal blood samples were collected in the second trimester and child neurodevelopment was assessed at 2 years of age using the Bayley Scales of Infant and Toddler Development, 3rd Edition (Bayley-III). Linear or curvilinear multiple regression models were used to examine associations between exposures and neurodevelopment outcomes. RESULTS: Select PFAAs were associated with lower Cognitive composite scores, including perfluoroheptanoate (PFHpA) (ß = -0.88, 95% confidence interval (CI): -1.7, -0.06) and perfluorododecanoate (PFDoA) (ß = -2.0, 95% CI: -3.9, -0.01). Non-linear relationships revealed associations of total PFOS (ß = -4.4, 95% CI: -8.3, -0.43), and linear-PFOS (ß = -4.0, 95% CI: -7.5, -0.57) and 1m-PFOS (ß = -1.8, 95% CI: -3.3, -0.24) isomers with lower Language composite scores. Although there was no effect modification, including THg interaction terms in PFAA models revealed negative associations between perfluorononanoate (PFNA) and Motor (ß = -3.3, 95% CI: -6.2, -0.33) and Social-Emotional (ß = -3.0, 95% CI: -5.6, -0.40) composite scores. DISCUSSION: These findings reinforce previous reports of adverse effects of maternal PFAA exposure during pregnancy on child neurodevelopment. The unique hazards posed from isomers of PFOS justify isomer-specific analysis in future studies. To control for possible confounding, mercury co-exposure may be considered in studies of PFAAs.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Mercúrio , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Lactente , Feminino , Humanos , Coorte de Nascimento , Estudos Prospectivos , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Fluorocarbonos/toxicidade , Caprilatos/toxicidade , Alberta
10.
Anal Chim Acta ; 1274: 341573, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37455083

RESUMO

Systematic selection of mobile phase and column chemistry type can be critical for achieving optimal chromatographic separation, high sensitivity, and low detection limits in liquid chromatography electrospray high resolution mass spectrometry (LC/MS). However, the selection process is challenging for non-targeted screening where the compounds of interest are not preselected nor available for method optimization. To provide general guidance, twenty different mobile phase compositions and four columns were compared for the analysis of 78 compounds with a wide range of physicochemical properties (logP range from -1.46 to 5.48), and analyte sensitivity was compared between methods. The pH, additive type, column, and organic modifier had significant effects on the analyte response factors, and acidic mobile phases (e.g. 0.1% formic acid) yielded highest sensitivity. In some cases, the effect was attributable to the difference in organic modifier content at the time of elution, depending on the mobile phase and column chemistry. Based on these findings, 0.1% formic acid, 0.1% ammonia and 5.0 mM ammonium fluoride were further evaluated for their performance in non-targeted LC/ESI/HRMS analysis of wastewater treatment plan influent and effluent, using a data dependent MS2 acquisition and two different data processing workflows (MS-DIAL, patRoon 2.1) to compare number of detected features and sensitivity. Both data-processing workflows indicated that 0.1% formic acid yielded the highest number of features in full scan spectrum (MS1), as well as the highest number of features that triggered fragmentation spectra (MS2) when dynamic exclusion was used.

11.
Environ Sci Technol ; 57(17): 6808-6824, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083417

RESUMO

Nontarget mass spectrometry has great potential to reveal patterns of water contamination globally through community science, but few studies are conducted in low-income countries, nor with open-source workflows, and few datasets are FAIR (Findable, Accessible, Interoperable, Reusable). Water was collected from urban and rural rivers around Dhaka, Bangladesh, and analyzed by liquid chromatography high-resolution mass spectrometry in four ionization modes (electrospray ionization ±, atmospheric pressure chemical ionization ±) with data-independent MS2 acquisition. The acquisition strategy was complementary: 19,427 and 7365 features were unique to ESI and APCI, respectively. The complexity of water pollution was revealed by >26,000 unique molecular features resolved by MS-DIAL, among which >20,000 correlated with urban sources in Dhaka. A major wastewater treatment plant was not a dominant pollution source, consistent with major contributions from uncontrolled urban drainage, a result that encourages development of further wastewater infrastructures. Matching of deconvoluted MS2 spectra to public libraries resulted in 62 confident annotations (i.e., Level 1-2a) and allowed semiquantification of 42 analytes including pharmaceuticals, pesticides, and personal care products. In silico structure prediction for the top 100 unknown molecular features associated with an urban source allowed 15 additional chemicals of anthropogenic origin to be annotated (i.e., Level 3). The authentic MS2 spectra were uploaded to MassBank Europe, mass spectral data were openly shared on the MassIVE repository, a tool (i.e., MASST) that could be used for community science environmental surveillance was demonstrated, and current limitations were discussed.


Assuntos
Poluentes Químicos da Água , Poluição da Água , Bangladesh , Fluxo de Trabalho , Cromatografia Líquida/métodos , Água , Espectrometria de Massas por Ionização por Electrospray/métodos , Poluentes Químicos da Água/análise
12.
J Dev Orig Health Dis ; 14(3): 402-414, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36939090

RESUMO

Folate and choline are methyl donor nutrients that may play a role in fetal brain development. Animal studies have reported that prenatal folate and choline supplementation are associated with better cognitive outcomes in offspring and that these nutrients may interact and affect brain development. Human studies that have investigated associations between maternal prenatal folate or choline levels and neurodevelopmental outcomes have reported contradictory findings and no human studies have examined the potential interactive effect of folate and choline on children's neurodevelopment. During the second trimester of pregnancy, maternal red blood cell folate was measured from blood samples and choline intake was estimated using a 24-h dietary recall in 309 women in the APrON cohort. At 3-5 years of age, their children's neurodevelopment was assessed using the Wechsler Preschool and Primary Scales of Intelligence - Fourth EditionCND, NEPSY-II language and memory subtests, four behavioral executive function tasks, and the Movement Assessment Battery for Children - Second Edition. Adjusted regressions revealed no associations between maternal folate and choline levels during pregnancy and most of the child outcomes. On the Dimensional Change Card Sort, an executive function task, there was an interaction effect; at high levels of choline intake (i.e., 1 SD above the mean; 223.03 mg/day), higher maternal folate status was associated with decreased odds of receiving a passing score (ß = -0.44; 95%CI -0.81, -0.06). In conclusion, maternal folate status and choline intake during the second trimester of pregnancy were not associated with children's intelligence, language, memory, or motor outcomes at 3-4 years of age; however, their interaction may have an influence children's executive functions.


Assuntos
Colina , Ácido Fólico , Gravidez , Criança , Animais , Humanos , Feminino , Pré-Escolar , Resultado da Gravidez , Suplementos Nutricionais , Alberta
13.
Exposome ; 2(1): osac007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483216

RESUMO

Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.

14.
Cells ; 11(19)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230992

RESUMO

The widespread environmental contaminant di-n-butyl phthalate (DBP) has been linked with reduced testosterone levels and adverse reproductive health outcomes in men. However, the underlying mechanisms of these anti-androgenic effects and the potential effects on other classes of steroid hormones remain to be elucidated. Here, we conducted mechanistic studies in human adrenocortical H295R cells exposed to 1-500 µM of DBP or its metabolite, mono-n-butyl phthalate (MBP), for 48 h. Quantification of steroid hormones in the cell medium by liquid chromatography-mass spectrometry revealed that both phthalates significantly decreased testosterone, androstenedione, corticosterone, and progesterone levels, in particular after dibutyryl-cyclic-AMP stimulation of steroidogenesis. Western blot analysis of key steroidogenic proteins showed that DBP induced a dose-dependent decrease of CYP11A1 and HSD3ß2 levels, while MBP only significantly decreased CYP17A1 levels, indicating that the compounds affect early steps of the steroidogenesis differently. Both DBP and MBP exposure also lead to a dose-related decrease in HSD17ß3, the enzyme which catalyzes the final step in the testosterone biosynthesis pathway, although these effects were not statistically significant. Interestingly, DBP increased the cortisol concentration, which may be due to the non-significant CYP11B1 increase in DBP-exposed cells. In contrast, MBP decreased cortisol concentration. Moreover, the analysis of superoxide generation and quantification of the protein oxidation marker nitrotyrosine demonstrated that DBP induced oxidative stress in H295R cells while MBP reduced protein nitrotyrosine levels. These findings confirm the anti-androgenic effects of DBP and MBP and reveal several differences in their toxicological mechanisms, with possible implications for future research on phthalate toxicity.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Dibutilftalato , Monofosfato de Adenosina , Androstenodiona , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Corticosterona , Dibutilftalato/toxicidade , Humanos , Hidrocortisona , Masculino , Ácidos Ftálicos , Progesterona , Esteroide 11-beta-Hidroxilase , Esteroides , Superóxidos , Testosterona
15.
Environ Sci Technol ; 56(22): 15508-15517, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36269851

RESUMO

To achieve water quality objectives of the zero pollution action plan in Europe, rapid methods are needed to identify the presence of toxic substances in complex water samples. However, only a small fraction of chemicals detected with nontarget high-resolution mass spectrometry can be identified, and fewer have ecotoxicological data available. We hypothesized that ecotoxicological data could be predicted for unknown molecular features in data-rich high-resolution mass spectrometry (HRMS) spectra, thereby circumventing time-consuming steps of molecular identification and rapidly flagging molecules of potentially high toxicity in complex samples. Here, we present MS2Tox, a machine learning method, to predict the toxicity of unidentified chemicals based on high-resolution accurate mass tandem mass spectra (MS2). The MS2Tox model for fish toxicity was trained and tested on 647 lethal concentration (LC50) values from the CompTox database and validated for 219 chemicals and 420 MS2 spectra from MassBank. The root mean square error (RMSE) of MS2Tox predictions was below 0.89 log-mM, while the experimental repeatability of LC50 values in CompTox was 0.44 log-mM. MS2Tox allowed accurate prediction of fish LC50 values for 22 chemicals detected in water samples, and empirical evidence suggested the right directionality for another 68 chemicals. Moreover, by incorporating structural information, e.g., the presence of carbonyl-benzene, amide moieties, or hydroxyl groups, MS2Tox outperforms baseline models that use only the exact mass or log KOW.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Espectrometria de Massas , Peixes , Ecotoxicologia , Aprendizado de Máquina
16.
Environ Sci Eur ; 34(1): 104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284750

RESUMO

Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-022-00680-6.

17.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955852

RESUMO

Studies indicate that phthalates are endocrine disruptors affecting reproductive health. One of the most commonly used phthalates, di-n-butyl phthalate (DBP), has been linked with adverse reproductive health outcomes in men, but the mechanisms behind these effects are still poorly understood. Here, adult male mice were orally exposed to DBP (10 or 100 mg/kg/day) for five weeks, and the testis and adrenal glands were collected one week after the last dose, to examine more persistent effects. Quantification of testosterone, androstenedione, progesterone and corticosterone concentrations by liquid chromatography-mass spectrometry showed that testicular testosterone was significantly decreased in both DBP treatment groups, whereas the other steroids were not significantly altered. Western blot analysis of testis revealed that DBP exposure increased the levels of the steroidogenic enzymes CYP11A1, HSD3ß2, and CYP17A1, the oxidative stress marker nitrotyrosine, and the luteinizing hormone receptor (LHR). The analysis further demonstrated increased levels of the germ cell marker DAZL, the Sertoli cell markers vimentin and SOX9, and the Leydig cell marker SULT1E1. Overall, the present work provides more mechanistic understanding of how adult DBP exposure can induce effects on the male reproductive system by affecting several key cells and proteins important for testosterone biosynthesis and spermatogenesis, and for the first time shows that these effects persist at least one week after the last dose. It also demonstrates impairment of testosterone biosynthesis at a lower dose than previously reported.


Assuntos
Dibutilftalato , Testículo , Animais , Dibutilftalato/metabolismo , Humanos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Espermatogênese , Testículo/metabolismo , Testosterona/metabolismo
18.
EBioMedicine ; 83: 104236, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36030647

RESUMO

BACKGROUND: Perfluoroalkyl substances PFOS and PFOA are persistent and bioaccumulative exogenous chemicals in the human body with a range of suspected negative health effects. It is hypothesised that exposure during prenatal and early postnatal life might have particularly detrimental effects on intrauterine and childhood growth. In a Danish longitudinal mother-child cohort we investigate effect of PFOS and PFOA in pregnancy and infancy on intrauterine and childhood growth and anthropometry. METHODS: COPSAC2010 is an ongoing population based mother-child cohort of 738 pregnant women and their children followed from 24 week gestation with longitudinal deep clinical phenotyping until age 10 years. In this observational cohort sub study plasma PFOS and PFOA concentrations were semi-quantified by untargeted metabolomics in the mothers at week 24 and 1 week postpartum and in the children at ages 6 and 18 months and calibrated using a targeted pipeline. We examined associations to intrauterine and childhood growth and anthropometry, including interactions with child sex. Untargeted and targeted blood metabolomics profiles were integrated to investigate underlying mechanisms. FINDINGS: Pregnancy plasma PFOA concentrations were associated with lower birth size -0.19 [-0.33; -0.05] BMI z-score per 1-ng/mL and increased childhood height (z-scored) at age 6: 0.18 [0.05; 0.31], but there was no association between childs' own infancy plasma PFOA concentration and height. Pregnancy plasma PFOS concentrations were also associated with lower birth BMI (-0.04 [-0.08; -0.01]), but in childhood pregnancy plasma PFOS concentration interacted with child sex on BMI and fat percentage at 6 years with negative associations in girls and positive in boys. The effect of maternal plasma PFOS concentration on lower girl BMI was borderline mediated through increasing child plasma lactosyl-ceramide levels (p-mediation=0.08). Similarly the effect of maternal plasma PFOS concentration on higher boy fat percentage was borderline mediated through increasing child plasma lactosyl-ceramide levels (p-mediation=0.07). Infancy concentrations of plasma PFOS associated with lower height in childhood, -0.06 z-score at age 6 [-0.19; -0.03]. INTERPRETATION: Higher PFOS and PFOA plasma concentrations during pregnancy had detrimental effects on fetal growth. The effects on childhood growth were not similar as PFOA increased child height, opposite of PFOS in multipollutant models suggesting a differing fetal programming effect. Sex specific growth effects were borderline mediated through an altered lactosyl-ceramide metabolism, proposing a possible mechanism of PFOS that has long-lasting health consequences in this observational study. FUNDING: All funding received by COPSAC are listed on www.copsac.com. The Lundbeck Foundation (Grant no R16-A1694); The Novo Nordic Foundation (Grant nos NNF20OC0061029, NNF170C0025014, NNF180C0031764) The Ministry of Health (Grant no 903516); Danish Council for Strategic Research (Grant no 0603-00280B) and The Capital Region Research Foundation have provided core support to the COPSAC research center. Effort from JALS is supported by R01HL123915, R01HL141826, and R01HL155742 from NIH/NHLBI. CEW was supported by the Swedish Heart Lung Foundation (HLF 20180290, HLF 20200693). BC has received funding for this project from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 946228). The funding agencies did not have any role in design and conduct of the study; collection, management, and interpretation of the data; or preparation, review, or approval of the manuscript.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Efeitos Tardios da Exposição Pré-Natal , Antropometria , Coorte de Nascimento , Caprilatos , Ceramidas , Criança , Poluentes Ambientais/efeitos adversos , Feminino , Humanos , Lactente , Masculino , Exposição Materna/efeitos adversos , Gravidez
19.
Environ Pollut ; 310: 119886, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934150

RESUMO

During hydraulic fracturing, wastewaters - termed flowback and produced water (FPW) - are created as a by-product during hydrocarbon extraction. Given the large volumes of FPW that a single well can produce, and the history of FPW release to surface water bodies, it is imperative to understand the hazards that hydraulic fracturing and FPW pose to aquatic biota. Using rainbow trout embryos as model organisms, we investigated impacts to cardio-respiratory system development and function following acute (48 h) and sub-chronic (28-day) FPW exposure by examining occurrences of developmental deformities, rates of embryonic respiration (MO2), and changes in expression of critical cardiac-specific genes. FPW-exposed embryos had significantly increased rates of pericardial edema, yolk-sac edema, and tail/trunk curvatures at hatch. Furthermore, when exposed at three days post-fertilization (dpf), acute 5% FPW exposures significantly increased embryonic MO2 through development until 15 dpf, where a switch to significantly reduced MO2 rates was subsequently recorded. A similar trend was observed during sub-chronic 1% FPW exposures. Interestingly, at certain specific developmental timepoints, previous salinity exposure seemed to affect embryonic MO2; a result not previously observed. Following acute FPW exposures, embryonic genes for cardiac development and function were significantly altered, although at termination of sub-chronic exposures, significant changes to these same genes were not found. Together, our evidence of induced developmental deformities, modified embryonic MO2, and altered cardiac transcript expression suggest that cardio-respiratory tissues are toxicologically targeted following FPW exposure in developing rainbow trout. These results may be helpful to regulatory bodies when developing hazard identification and risk management protocols concerning hydraulic fracturing activities.


Assuntos
Fraturamento Hidráulico , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Coração , Águas Residuárias , Água
20.
J Am Soc Mass Spectrom ; 33(7): 1134-1147, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35649165

RESUMO

While important advances have been made in high-resolution mass spectrometry (HRMS) and its applications in non-targeted analysis (NTA), the number of identified compounds in biological and environmental samples often does not exceed 5% of the detected chemical features. Our aim was to develop a computational pipeline that leverages data from HRMS but also incorporates physicochemical properties (equilibrium partition ratios between organic solvents and water; Ksolvent-water) and can propose molecular structures for detected chemical features. As these physicochemical properties are often sufficiently different across isomers, when put together, they can form a unique profile for each isomer, which we describe as the "physicochemical fingerprint". In our study, we used a comprehensive database of compounds that have been previously reported in human blood and collected their Ksolvent-water values for 129 partitioning systems. We used RDKit to calculate the number of RDKit fragments and the number of RDKit bits per molecule. We then developed and trained an artificial neural network, which used as an input the physicochemical fingerprint of a chemical feature and predicted the number and types of RDKit fragments and RDKit bits present in that structure. These were then used to search the database and propose chemical structures. The average success rate of predicting the right chemical structure ranged from 60 to 86% for the training set and from 48 to 81% for the testing set. These observations suggest that physicochemical fingerprints can assist in the identification of compounds with NTA and substantially improve the number of identified compounds.


Assuntos
Água , Humanos , Isomerismo , Estrutura Molecular , Solventes/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA